Two independent pathways of regulated necrosis mediate ischemia-reperfusion injury.

نویسندگان

  • Andreas Linkermann
  • Jan Hinrich Bräsen
  • Maurice Darding
  • Mi Kyung Jin
  • Ana B Sanz
  • Jan-Ole Heller
  • Federica De Zen
  • Ricardo Weinlich
  • Alberto Ortiz
  • Henning Walczak
  • Joel M Weinberg
  • Douglas R Green
  • Ulrich Kunzendorf
  • Stefan Krautwald
چکیده

Regulated necrosis (RN) may result from cyclophilin (Cyp)D-mediated mitochondrial permeability transition (MPT) and receptor-interacting protein kinase (RIPK)1-mediated necroptosis, but it is currently unclear whether there is one common pathway in which CypD and RIPK1 act in or whether separate RN pathways exist. Here, we demonstrate that necroptosis in ischemia-reperfusion injury (IRI) in mice occurs as primary organ damage, independent of the immune system, and that mice deficient for RIPK3, the essential downstream partner of RIPK1 in necroptosis, are protected from IRI. Protection of RIPK3-knockout mice was significantly stronger than of CypD-deficient mice. Mechanistically, in vivo analysis of cisplatin-induced acute kidney injury and hyperacute TNF-shock models in mice suggested the distinctness of CypD-mediated MPT from RIPK1/RIPK3-mediated necroptosis. We, therefore, generated CypD-RIPK3 double-deficient mice that are viable and fertile without an overt phenotype and that survived prolonged IRI, which was lethal to each single knockout. Combined application of the RIPK1 inhibitor necrostatin-1 and the MPT inhibitor sanglifehrin A confirmed the results with mutant mice. The data demonstrate the pathophysiological coexistence and corelevance of two separate pathways of RN in IRI and suggest that combination therapy targeting distinct RN pathways can be beneficial in the treatment of ischemic injury.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The role of hormones in renal disease and ischemia-reperfusion injury

The patients with renal diseases, especially end-stage renal disease (ESRD), are at high risk of developing cardiovascular disturbances. Some hormones such as brain natriuretic peptide appear to be important serum biomarkers in predicting cardiac death in ESRD patients. Renal diseases cause inflammation, anemia, uremic toxins, fluid overload, and electrolyte disturbance. Kidney transplantation ...

متن کامل

Melatonin Protective Effects against Liver Ischemia/Reperfusion Injury

Hepatic ischemia-reperfusion (I/R) is a common phenomenon during liver surgery, transplantation, infection and trauma which results in damage and necrosis of the hepatic tissue through different pathways. Mechanisms involved in I/R damage are very intricate and cover several aspects. Several factors are involved in I/R-induced damages; briefly, decrease in sinusoidal perfusion and ATP generatio...

متن کامل

TLR9 Mediates Remote Liver Injury following Severe Renal Ischemia Reperfusion

Ischemia reperfusion injury is a common cause of acute kidney injury and is characterized by tubular damage. Mitochondrial DNA is released upon severe tissue injury and can act as a damage-associated molecular pattern via the innate immune receptor TLR9. Here, we investigated the role of TLR9 in the context of moderate or severe renal ischemia reperfusion injury using wild-type C57BL/6 mice or ...

متن کامل

Effect of renal ischemia-reperfusion on lung injury and inflammatory responses in male rat

Objective(s):Acute kidney injury (AKI), a syndrome characterized by decreased glomerular filtration, occurs in every 1 of 5 hospitalized patients.  Renal ischemia-reperfusion, one of the main causes of AKI, is of particular importance in the setting of kidney transplantation. Materials and Methods: Sixty male rats were divided into four groups including control, nephrectomy, sham surgery and re...

متن کامل

Is adalimumab protective in ischemia-reperfusion injury in lung?

Objective(s): Increasing cytokines and reactive oxygen species (ROS) during ischemia reperfusion (I-R) leads to the lung damage. Adalimumab (Ada) is a potent tumor necrosis factor-alpha (TNF-α) inhibitor agent. We aimed to evaluate whether Ada would prevent the lung tissue from damage development over the I-R process. Materials and Methods:Twenty seven Wistar albino male rats were divided into...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 110 29  شماره 

صفحات  -

تاریخ انتشار 2013